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Abstract

Stages of oat–vetch cover crop decomposition were characterized over time in terms of carbon and nitrogen cycling,
microbial activity and community dynamics in organically and conventionally managed soils in a field experiment
and a laboratory incubation experiment. We subsequently determined which variables describing soil microbial
community dynamics, C and N cycling could be used as predictors ofPythium aphanidermatumdamping-off
incidence and relative growth. Disease incidence and relative growth ofP. aphanidermatumwere measured in growth
chamber assays andin vitro growth tests. No significant differences were detected between the conventional and
organic farming system with respect to either relative growth or disease incidence. Stepwise discriminant analysis
on three classes of disease incidence or relative growth led to selection of qualitatively similar variables. Only one
soil microbial variable, total biomass of actinomycetes, was selected. Total C and N content of debris extracted from
soil as well as NH4-N content of soil were selected most consistently and show promise for assessment of potential
damping-off incidence byP. aphanidermatumfor young seedlings.

Introduction

Concerns about the sustainability of the biosphere have
led to formulation of an elaborate ecological research
agenda proposed by the Ecological Society of America,
in which the development of indicators of ecological
responses to stress constitutes one of the research pri-
orities (Lubchenco et al., 1991). This call has been
extended by the US Soil Ecology Society to explicitly
include the soil as part of a sustainable biosphere initia-
tive (Klopatek et al., 1992). At the same time, research
and discussion of soil quality and soil health are becom-
ing both more prominent and urgent [see special issues
of Journal of Soil and Water Conservation 50(3) and

American Journal of Alternative Agriculture 7(1–2)].
The search for indicators of soil quality, soil health or
responses of soil to stress, has focused on soil inverte-
brates (Paoletti et al., 1991; Bongers, 1990; Stork and
Eggleton, 1992), soil microorganisms (Kennedy and
Papendick, 1995; Visser and Parkinson, 1992), phys-
ical and chemical aspects (Arshad and Coen, 1992;
Karlen et al., 1994) and general soil and crop man-
agement practices (Reicosky et al., 1995; Karlen et al.,
1992, 1994).

‘Soil quality’ has been defined as ‘the capacity of a
soil to function within ecosystem boundaries to sustain
biological productivity, maintain environmental qual-
ity, and promote plant and animal health’ (Doran and
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Parkin, 1994) and is often used synonymously with
‘soil health’ (Pankhurst et al., 1995). Plant health is
explicitly mentioned as part of the definition and the
ability of plant pathogens in soils to cause disease must
be considered as part of the list of potential indica-
tors of ecosystem health (Pankhurst et al., 1995; Van
Bruggen and Gr̈unwald, 1996). Thus, soil quality is
partially determined by the risk of root infection by
plant pathogens (Van Bruggen and Grünwald, 1996).
Pankhurst et al. (1995) point out that among many
soil biological variables measured in their experiments,
root pathogens were considered to have potential as
bioindicators. Unfortunately, the ability of a soil to sup-
press pathogens is itself a measurement that integrates
many individual soil factors and, like the concept of
soil quality, the concept of soil suppressiveness calls
for the use of different indicator variables.

After obtaining a set of observations of different vari-
ables, the selection of a good indicator variable of soil
suppressiveness to plant pathogens has to rely on dif-
ferent statistical procedures. Statistical methods used
to select indicator variables for plant pathogens include
univariate methods, such as analyses of variance or
t-testing (Pankhurst et al., 1995; Prot and Savary,
1993), and multivariate approaches. A multivariate
approach is often more promising when trying to under-
stand which indicator variables can give an indication
of the risk of infection of plants by plant pathogens.
This is because single variables never explain the full
range of behavior of pathogens in fluctuating envi-
ronments (Wiese, 1982; Wallace, 1978). Multivariate
approaches used in plant pathology include multiple
regression analysis (Kincaid et al., 1970; Sallans,
1948), path coefficient analysis (Hampton, 1975), prin-
cipal components analysis (Oyarzun et al., 1994), clus-
ter analysis (Shennan, 1992), canonical and stepwise
discriminant analysis (Papavizas et al., 1968), canon-
ical correlation (Workneh et al., 1993), polar ordina-
tion (Oyarzun et al., 1994) and correspondence analysis
(Savary et al., 1993, 1994, 1988; Prot and Savary, 1993;
Oyarzun et al., 1994) among others. A stepwise proce-
dure such as stepwise regression analysis or stepwise
discriminant analysis is helpful in the selection of indi-
cator variables, since the original multivariate data set
is reduced to a few important variables that explain
most of the pathogen or disease dynamics (Papavizas
et al., 1968).

Damping-off disease caused byPythium spp.
has been intensively studied to understand which
abiotic and biotic components of soil determine

suppressiveness of soil to the pathogen (Ko and Ho,
1983; Bouhot, 1981; Martin and Hancock, 1986).
Among the range of factors considered were soil mois-
ture and temperature (Lifshitz and Hancock, 1983),
soil nutrient levels (Martin and Hancock, 1986; Ko
and Kao, 1989), amendments of soil (Agnihorti and
Vaartaja, 1967; Scḧuler et al., 1989; Chen et al., 1987;
Bouhot, 1981) and soil biological properties (Sugimoto
et al., 1990; Boehm and Hoitink, 1992; Boehm et al.,
1993; Chung and Hoitink, 1990). Despite this exten-
sive body of work, relatively little progress has been
made towards understanding, and even less so towards
predicting, population establishment, growth and inci-
dence, and severity of damping-off disease (Lumsden
et al., 1990). Several experiments were conducted to
study the effect of short-term cover crop decomposi-
tion on suppressiveness of soils toPythium aphanider-
matumusing tomato plants in growth chamber assays
or in vitro bioassays of growth (Grünwald et al., 1997,
2000). During short-term cover crop decomposition,
no differences in soil suppressiveness between organic
or conventionally managed soils could be established
(Grünwald et al., 2000). However, the stage of decom-
position of an incorporated cover crop significantly
affected soil suppressiveness (Grünwald et al., 2000).

The goal of the research described in this paper
was to identify indicators using stepwise discriminant
analysis that predict disease suppressiveness of soil to
P. aphanidermatum(Edson) Fitzp. in two farming sys-
tems at different stages of cover crop decomposition
and to contribute to an understanding of the mech-
anisms underlying the natural controls observed in
soils. Carbon, nitrogen and microbial dynamics during
cover crop decomposition have already been described
(Hu et al., 1997; Gr̈unwald et al., 2000). The specific
objectives were to identify the most important indica-
tor variables for disease suppression, by determining
which variables describing soil microbial community
dynamics, C and N cycling could be used as predic-
tors of P. aphanidermatumgrowth and damping-off
incidence.

Materials and methods

Soils and cover crops

Research was conducted with soils from two differ-
ent comparative farming systems projects. The first of
these experiments (Experiment 1) was conducted in
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the field, while the second experiment (Experiment 2)
was conducted in the laboratory using air-dried and
rewetted field soil, to which dried cover crop residue
was added. More details on soils, cover crop and
experimental procedures are presented in Grünwald
et al. (2000).

Experiment 1
The soils used for Experiment 1 came from a farming
systems project started in 1986 (Stivers and Shennan,
1991; Shennan, 1992), from which we chose the winter-
fallow plots that received 168 kg N ha−1 in the form
of ammonium-sulfate and the green manured plots
that were seeded to an oat-vetch mixture, supplying
a similar amount of nitrogen. The soil is a coarse-
loamy, mixed, Thermic Mollic Xerofluvent soil with a
pH of 7.7, CEC of 25.4 meq 100 g−1 soil, and 33 ppm
NaHCO3-extractable P. In Fall of 1992 the experiment
was terminated by planting a cover crop mixture con-
sisting of oats (Avena sativaL.) and lana wooly pod
vetch (Vicia dasycarpacv. lana) in all plots including
the previously not cover-cropped plots. Relative to time
of incorporation of an oat–vetch cover crop, we took
soil samples 3 days before incorporation, and 7, 20,
and 35 days after incorporation of the cover crop and
stored samples in plastic buckets with a lid at 5◦C until
processed. See Grünwald et al. (2000) for more details.

Experiment 2
For Experiment 2, soil came from the Sustainable Agri-
culture Farming Systems project started in 1989 at
UC Davis, where a conventional system with a 2-year
rotation, and conventional, low input and organically
managed systems with 4-year rotations were compared
(Temple et al., 1995). Soils were sampled, air-dried
on greenhouse benches and kept in buckets at air-
temperature until used. Cover crops used for incorpo-
ration consisted of field grown oats (A. sativaL.) and
lana wooly pod vetch (V. dasycarpaTen.) harvested
from plots adjacent to Experiment 1. Before incorpo-
ration of oat–vetch debris, 16.5 kg dry weight soil were
gently brought to 10% moisture using spray-bottles,
mixed and incubated for 48 h. Subsequently, we either
added a cover crop mixture consisting of 76.0 g air-
dried oats and 38.0 g air-dried vetch and another 3%
distilled water, or just 3% water for the treatment where
no cover crop was incorporated. The soil was then
divided into two plastic buckets (8.0 kg each) for incu-
bation in the dark at 22±2 ◦C (Grünwald et al., 2000).

Effect of soil on pathogen growth and
damping-off incidence

Radial growth and relative growth ofP. aphanider-
matum (Edson) Fitzp. was determined over auto-
claved and natural soil using anin vitro method
(Grünwald et al., 1997). Radial growth of a fungus
was measured on a cellophane membrane overlaying
either natural or autoclaved soil, inoculated with 48 h
old potato dextrose agar plug cultures ofP. aphanider-
matum. Relative growth is subsequently estimated as

Relative growth=
Radial growth (cm)
on unsterilizedsoil

Radial growth (cm)
on sterilized soil

.

During Experiment 1, a growth chamber bioassay
was performed usingP. aphanidermatumto determine
whether thein vitro bioassay was a good indicator of
damping-off incidence (Grünwald et al., 1997). Soils
were either not inoculated, or inoculated at a low (103

oospores g−1 soil) or high level (104 oospores g−1 soil)
of inoculum. Three seeds were planted per pot and
damped-off seedlings were counted twice, two and
three weeks after planting, to determine disease inci-
dence as the percentage of seeds that died within 21
days after planting due toP. aphanidermatum.

Soil nutrient cycling

Total soil C, N, NO3-N, NH4-N, and hot-water soluble
carbohydrates were determined (Hu et al., 1997) using
a randomly obtained subsample sieved through a 4 mm
mesh. Organic debris larger than 4 mm was cut and
passed through the mesh. Finely ground, air-dried soil
samples were measured for C and N contents by com-
bustion using a Carlo Erba C/N analyzer (Carlo Erba,
Milano, Italy) at the DANR Analytical Laboratory of
the University of California. Hot-water extractable car-
bohydrates were determined by slightly modifying the
method of Brink et al. (1960) as described in Hu et al.
(1997) using glucose as the standard. Soil NO3-N and
NH4-N were detected following 2 M KCl extraction
(Keeney and Nelson, 1982). Concentrations of NO3-N
and NH4-N in extracts were determined on an Inorganic
Nitrogen Analyzer (Alltech Associates, Beerfield, IL)
according to Carlson (1986). Plant debris was extracted
from ca. 2000–3000 g soil using a wet-sieving method
(Weinhold, 1977). Floating materials were composited
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per plot, dried in an oven at 60◦C and ground for fiber
analyses, and total C and N content of debris. Neutral-
detergent fiber (NDF) and acid-detergent fiber (ADF)
analyses of retrieved residues were performed follow-
ing a procedure modified from Robertson and Van
Soest (Robertson and Van Soest, 1981). Acid-detergent
lignins (ADLs) were obtained after cellulose was elim-
inated by 72% H2SO4 digestion for 3 h. Cellulose con-
tent was estimated by subtracting ADLs from ADF. All
results were presented as percentages cellulose, hemi-
cellulose, and lignin of dry matter on an ash-free basis
(Hu et al., 1997).

Soil microbial biomass and activity

Microbial biomass C was determined by the chlo-
roform fumigation–extraction method adapted from
Vance et al. (1987) using akec-factor of 0.33 accord-
ing to Sparling and West (1988). Fluorescein diac-
etate (FDA) hydrolytic activity, generally considered
as a measure of microbial activity, was determined on
5-g subsamples in three pseudoreplications per plot
and three or four replications for each treatment as
described previously by Workneh et al. (1993). Total
bacterial numbers were estimated by direct counts
after staining with fluorescein isothiocyanate (FITC)
(Babiuk and Paul, 1970). Active bacteria and active or
total fungal hyphal lengths were estimated by direct
observation after staining with fluorescein diacetate
(Ingham and Klein, 1984). Total fungi were estimated
using phase contrast microscopy (Colinas et al., 1994),
and hyphae which were smaller than 1µm in width
were counted as total actinomycetes. Biomass was cal-
culated by multiplying bacterial and fungal biovolume
by an average bacterial density of 0.33 g cm−3 and aver-
age hyphal density of 0.41 g cm−3 (Ingham et al., 1991).
All direct counts were conducted by the Soil Microbial
Biomass Service at Oregon State University (Covallis,
OR, USA).

Statistical analysis

Initial analysis consisted of descriptive statistics for
each variable by experiment, farming system and
decomposition stage of the cover crop. All soil nutri-
ent cycling, microbial community, and disease vari-
ables were tested for normality by univariate analysis.
Non-normally distributed variables were subjected to
the Box–Cox transformation procedure (Dixon et al.,

Table 1. Definitions of abbreviations used for soil C and N cycling
and microbial variables used in Experiments 1 and 2

Variable Abbreviation Units

Soil nutrient cycling
Total C of soil C soil mg g−1 soil
Total N of soil N soil mg g−1 soil
C/N ratio of soil C/N soil —
NH4-N of soil NH4-N µg g−1 soil
NO3-N of soil NO3-N µg g−1 soil
dry weight of debris DW debris mg g−1 soil
Total C of debris C debris mg g−1 dry matter
Total N of debris N debris mg g−1 dry matter
C/N of debris C/N debris —
Lignin content of Lignin mg g−1 dry matter
debris

Cellulose content of Cellulose mg g−1 dry matter
debris

Soil microbial dynamics
Microbial biomass MBC µg g−1 soil
carbon

FDA-hydrolytic FDA µg g−1 soil minute−1

activity
Potentially PMN µg N g−1 soil
mineralizable N

Total biomass of TB µg biomass g−1 soil
bacteria

Active biomass of AB µg biomass g−1 soil
bacteria

Total biomass of TF µg biomass g−1 soil
fungi

Active biomass of AF µg biomass g−1 soil
fungi

Total biomass of TA µg biomass g−1 soil
actinomycetes

Active biomass of AA µg biomass g−1 soil
actinomycetes

1990) to achieve normality, and then standardized to
zero mean and unit variance before discriminant anal-
ysis. The final choice of whether a transformation was
used or not was based on whether transformations were
able to meet assumptions of subsequent statistical tests,
whether a variable behaved differently in different data
sets, and whether results from the discriminant anal-
ysis were affected by the transformation suggested
by the Box–Cox procedure (Dixon et al., 1990). A
canonical discriminant analysis using all soil micro-
bial, C and N variables was performed to assess how
well this data set discriminated between three levels
of in vitro relative growth ofP. aphanidermatumand
disease incidence ofP. aphanidermatumin growth
chamber experiments. The three classes contained
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approximately equal numbers of observations. Sub-
sequently, a stepwise discriminant analysis was con-
ducted to select those variables best discriminating
between these three groups of relative growth or disease
incidence. A singularity (tolerance) of 0.1 was used
to bypass multicollinearity, while significance levels
regardingF-to-enter andF-to-stay values were set to
0.15 and 0.3, respectively (Afifi and Clark, 1990). The
degree of differentiation between the groups obtained
by entering the selected variables was interpreted in
terms of the magnitude and significance level of the
average squared canonical correlation (ASCC), which
estimates the amount of variance that is accounted
for by classifying the observations into the three
groups. Discriminant analyses were performed both
separately and jointly for the two experiments. Unless

Figure 1. (A) Disease incidence in growth chamber assays in Experiment 1 at low level of inoculation withP. aphanidermatum(% of
total plants damped off due toP. aphanidermatumafter subtraction of plants damped off in control due to native microflora) and relative
growth ofP. aphanidermatumat different stages of cover crop decomposition in organically and conventionally managed soils from (B)
Experiment 1 and (C) Experiment 2. The abscissa reflects samples taken 3 days before, and 7, 20, and 35 days after incorporation of
the oat–vetch cover crop. Data presented in (B) and (C) have been previously presented in Grünwald et al. (1997). Shown are mean±
standard errors of the means.

otherwise indicated, all statistics were performed using
the procedures within the Statistical Analysis System
library (1988). Abbreviations used for soil microbial,
C and N variables throughout this manuscript are pre-
sented in Table 1 with the corresponding units.

Results

Disease assays

Damping-off incidence caused byP. aphanidermatum
and relative growth ofP. aphanidermatumwere highest
ten days after incorporation in Experiment 1 and 7 days
after incorporation in Experiment 2 and then declined
(Figure 1). Disease incidence or relative growth were
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lowest 20–21 days after incorporation (Figure 1). No
significant differences were detected between the con-
ventional and organic farming systems with respect to
damping-off incidence or relative growth (P ≥ 0.05).

Factors affecting distinctions among classes of
relative growth

Ordination resulting from a canonical discriminant
analysis on all soil nutrient cycling and microbial
variables distinguished well between three classes of
relative growth in Experiments 1 and 2 (Figure 2).
Canonical function 1 explained 69% and 67% of the
variance in Experiments 1 and 2, respectively. Sep-
aration of low, medium, and high levels of relative
growth were better in Experiment 2 (Figure 2B vs D),
but the behavior of the three classes was qualitatively
the same for both canonical axes 1 and 2. Results

Figure 2. (A) Grouping of samples from Experiment 1 and (C) Experiment 2 resulting from a canonical discriminant analysis performed
on three classes of relative growth (i.e., low, medium, and high) with all soil microbial, C and N variables. Classes were designed to have
distinct breaks between classes, yet approximately equal numbers of observations. (B) and (D) show the means and standard deviations
of the canonical variable scores of Experiments 1 and 2, respectively.

from the stepwise discriminant analysis using three
classes of relative growth ofP. aphanidermatumfor
Experiment 1 resulted in selection of N debris and
lignin content of extracted debris, when only cover crop
treatments were included and N of debris, when all
treatments were included (Table 2). In Experiment 2,
the same kind of analysis selected NH4-N, C of debris,
and total biomass of actinomycetes with only cover-
cropped treatments and NH4-N, C of debris with inclu-
sion of all treatments (Table 2). When both data sets
from Experiments 1 and 2 were combined, cellulose
and C content of debris were selected, when only cover
cropped treatments were included, while N content of
debris, soil NH4-N, and microbial biomass carbon were
selected, when cover-cropped and non-cover- cropped
treatments were included (Table 2). Generally, the
ASCCs were higher in Experiment 2 or the combina-
tion of Experiments 1 and 2 (Table 2). As indicated
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Table 2. Soil C, N and microbial variables selected by stepwise discriminant analysis for differentiating between three levels of relative growth ofP. aphanidermatum
based on Experiments 1 (field experiment) and 2 (controlled incubation experiment)

Obs.1 Experiment 1 Experiment 2 Experiment 1 and 2 combined

Variable2 P > F Cumulative P > ASCC Variable2 P > F Cumulative P > ASCC Variable2 P > F Cumulative P > ASCC
ASCC3 ASCC3 ASCC3

CC4 N debris 0.0643 0.1150 0.0643 NH4-N 0.0001 0.3360 0.0001 Cellulose 0.0001 0.1815 0.0001
Lignin 0.0859 0.2204 0.0302 C debris 0.0181 0.4957 0.0001 C debris 0.0456 0.2454 0.0001

TA 0.0333 0.5901 0.0001

All 5 N debris 0.0034 0.1951 0.0034 NH4-N 0.0001 0.2616 0.0001 N debris 0.0001 0.1674 0.0001
C debris 0.0964 0.3200 0.0003 NH4-N 0.0062 0.2484 0.0001

MBC 0.0290 0.2885 0.0001

1Observations from treatments with and without cover crop (CC) included in discriminant analysis.
2See Table 1 for explanation of variable names.
3Average squared canonical correlation.
4Only cover cropped (CC) soils included.
5All soils before and after cover crop incorporation included.
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by the total-sample correlations between the canon-
ical variable 1 and the original variables, nitrogen
and carbon content of debris were negatively corre-
lated with increases in relative growth classes (data not
shown). Total biomass of actinomycetes, and microbial
biomass carbon of soil and lignin and cellulose content
of debris were positively correlated with increases in
relative growth class. However, NH4-N was an excep-
tion in that it was positively correlated with increase in
relative growth class in Experiment 2 and negatively
correlated in the analysis where both experiments were
combined. Since NH4-N was positively correlated to
increasing relative growth in both Experiments 1 and 2
(within group) and negatively correlated in the com-
bined data set (between groups), the correlation in the
combination of the two experiments may be an artifact.

Figure 3. Relationship between relative growth and N debris in
Experiment 1. N debris is significantly negatively correlated with
relative growth (P < 0.05).

Figure 4. Relationships between relative growth and (A) NH4-N or (B) C debris in Experiment 2. C debris is significantly negatively
correlated and NH4-N is significantly positively correlated with relative growth in Experiment 2 (P < 0.05).

Figures 3 and 4 present linear regressions between
variables selected in the stepwise discriminant analysis
including all observations for Experiments 1 and 2,
respectively (Table 2). N debris was significantly neg-
atively correlated with relative growth (P < 0.05)
(Figure 3). C debris was significantly negatively cor-
related and NH4-N was significantly positively corre-
lated with relative growth in Experiment 2 (P < 0.05)
(Figure 4).

Although the sets of variables selected in the step-
wise discriminant analyses were somewhat different,
they can be exchanged with each other to a certain
extent by looking at correlation coefficients between
a selected variable and other variables. Thus, vari-
ables which are highly correlated with one another are
expected to be interchangeable to a certain degree. In
Experiment 1, C of debris could replace N of debris
(Table 3), while in Experiment 2, N debris could replace
C debris (Table 4). Similarly, in the combined analysis
(Experiments 1 and 2) cellulose content of debris could
be replaced with N debris, and lignin (Table 5). To fur-
ther explain the selection of different variables, we car-
ried out additional discriminant analyses using subsets
of variables previously selected in one experiment in
a stepwise analysis using the data set from the other
experiment (Table 6). Except for one case, significant
ASCCs were obtained in all cross validations, although
in most cases they were lower and consisted of fewer
variables. N debris, C debris, and NH4-N most consis-
tently emerged as indicator variables from the stepwise
discriminant analysis (Tables 2 and 6) and, except for
NH4-N, were negatively correlated with relative growth
(Figures 3 and 4).
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Table 3. Simple correlations among variables selected by stepwise discriminant analysis in Table 2 for
Experiment 1 (n = 26). Numbers in bold typeface reflect correlations that are significant atP ≤ 0.05

N debris1 C debris Lignin Cellulose NH4-N TA MBC RG

N debris 1.00
0.0000

C debris 0.84 1.00
0.0001 0.0000

Lignin −0.35 −0.13 1.00
0.0776 0.5219 0.0000

Cellulose −0.45 −0.19 0.71 1.00
0.0224 0.3439 0.0001 0.0000

NH4-N −0.28 −0.63 −0.21 −0.001 1.00
0.1625 0.0006 0.2981 0.9944 0.0000

TA 0.09 0.02 −0.08 −0.03 0.13 1.00
0.6639 0.9320 0.7064 0.8849 0.5189 0.0000

MBC −0.48 −0.42 0.25 0.49 0.24 0.30 1.00
0.0130 0.0337 0.2102 0.0105 0.2434 0.1407 0.0000

RG −0.50 −0.18 0.83 0.76 −0.11 −0.04 0.44 1.00
0.0096 0.3829 0.0001 0.0001 0.5778 0.8504 0.0265 0.0000

1See Table 1 for explanation of variable names.

Table 4. Simple correlations among variables selected by stepwise discriminant analysis in Table 2 for
Experiment 2 (n = 30). Numbers in bold typeface reflect correlations that are significant atP ≤ 0.05

N debris1 C debris Lignin Cellulose NH4-N TA MBC RG

N debris 1.00
0.0000

C debris 0.80 1.00
0.0001 0.0000

Lignin 0.39 0.07 1.00
0.0308 0.7164 0.0000

Cellulose −0.44 −0.09 0.39 1.00
0.0144 0.6360 0.0308 0.0000

NH4-N −0.74 −0.64 −0.10 0.13 1.00
0.0001 0.0001 0.6024 0.4994 0.0000

TA −0.39 −0.18 −0.37 0.56 0.31 1.00
0.0318 0.3542 0.0419 0.0014 0.0902 0.0000

MBC −0.10 0.33 −0.61 0.43 −0.07 0.39 1.00
0.5858 0.0767 0.0003 0.0169 0.7047 0.0327 0.0000

RG −0.74 −0.68 −0.39 0.44 0.73 0.34 −0.05 1.00
0.0001 0.0001 0.0316 0.0139 0.0001 0.0635 0.7980 0.0000

1See Table 1 for explanation of variable names.

Factors affecting distinctions among classes of
disease incidence

The grouping resulting from the canonical discrim-
inant analysis on all soil nutrient cycling variables
distinguished well between three classes of disease
incidence from the growth chamber assay conducted

for Experiment 1 (Figure 5). Canonical variable 1
accounted for 74% and 81% of the variance in the
low and high inoculum treatments, respectively. Using
classes of disease incidence from the growth cham-
ber experiment conducted in Experiment 1, the step-
wise discriminant analysis selected N content of debris,
C/N ratio of debris, C content of debris, C/N of soil,
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Table 5. Simple correlations among variables selected by stepwise discriminant analysis in Table 2 for
Experiments 1 and 2 combined (n = 56). Numbers in bold typeface reflect correlations that are significant
atP ≤ 0.05

N debris1 C debris Lignin Cellulose NH4-N TA MBC RG

N debris 1.00
0.0000

C debris 0.74 1.00
0.0001 0.0000

Lignin −0.45 −0.04 1.00
0.0006 0.7496 0.0000

Cellulose −0.54 −0.07 0.93 1.00
0.0001 0.6265 0.0001 0.0000

NH4-N 0.35 −0.17 −0.88 −0.88 1.00
0.0077 0.2047 0.0001 0.0001 0.0000

TA −0.52 −0.11 0.73 0.85 −0.70 1.00
0.0001 0.4163 0.0001 0.0001 0.0001 0.0000

MBC −0.39 0.01 0.29 0.47 −0.32 0.52 1.00
0.0026 0.9371 0.0320 0.0003 0.0169 0.0001 0.0000

RG −0.68 −0.43 0.34 0.48 −0.37 0.48 0.24 1.00
0.0001 0.0009 0.0104 0.0002 0.0051 0.0002 0.0794 0.0000

1See Table 1 for explanation of variable names.

Table 6. Soil C, N and microbial variables previously selected by stepwise discriminant analysis for differentiating between
three levels of relative growth ofP. aphanidermatumbased on Experiments 1 (field experiment) and 2 (controlled incubation
experiment) (Table 2) were used for cross-validation by subjecting a set of selected variables to stepwise discriminant analysis
in one of the other two data sets

Variable set1 Experiment 1 Experiment 2 Experiments 1 and 2

Variable ASCC P > ASCC Variable ASCC P > ASCC Variable ASCC P > ASCC
entered entered entered

N debris N debris 0.19 0.0013 N debris 0.17 0.0001
NH4-N NH4-N — — NH4-N 0.13 0.0001
C debris C debris 0.096 0.0866 C debris 0.24 0.0001
N debris N debris 0.195 0.0034 N debris — —
NH4-N NH4-N — — NH4-N 0.26 0.0001
MBC MBC — — MBC 0.31 0.0004

1Variables selected in previous stepwise discriminant analyses (Table 2). See Table 1 for explanation of variable names.

and NH4-N as variables best discriminating between
three classes of disease incidence (Table 7). Figure 6
presents linear regressions between variables selected
for Experiment 1 for low and high levels of inoculation
of soil withP. aphanidermatumin the stepwise discrim-
inant analysis including all observations (Table 7). N
debris, and C/N debris were negatively correlated with
disease incidence, while NH4-N was positively corre-
lated with disease incidence (Figure 6).

N debris, C debris, and NH4-N had been selected pre-
viously in the analysis conducted with relative growth,
while C/N debris, and C/N soil were not selected pre-
viously (Tables 2 and 7). Thus, N debris, C debris, and

NH4-N were the variables most consistently chosen by
the stepwise discriminant analysis with different levels
of either relative growth or disease incidence.

Discussion

Two kinds of assays were conducted to test soils
for suppressiveness toP. aphanidermatum, namely an
in vitro assay and a growth chamber bioassay. Both
assays yielded comparable results, and in both cases
conventionally or organically farmed soils were not sig-
nificantly different. The two assays were significantly
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Figure 5. (A) Grouping of samples from low inoculum and (C) high inoculum ofP. aphanidermatumtreatments in Experiment 1
resulting from a canonical discriminant analysis performed on three classes of damping-off incidence (i.e., low, medium, and high) with
all soil microbial, C and N variables. Classes were designed to have distinct breaks between classes, yet approximately equal numbers of
observations. (B) and (D) show the mean and standard deviations of the canonical variable scores of the low and high inoculum treatment,
respectively.

Table 7. Soil C, N and microbial variables selected by stepwise discriminant analysis for differentiating between three levels of
disease incidence of tomato due toP. aphanidermatumbased on growth chamber assays in Experiment 1

Low inoculum ofP. aphanidermatum High inoculum ofP. aphanidermatum

Obs.1 Variable2 P > F Cumulative ASCC3 P > ASCC Variable2 P > F Cumulative ASCC3 P > ASCC

CC4 N debris 0.0175 0.1598 0.0175 C debris 0.0124 0.1709 0.0124
C/N debris 0.1220 0.2543 0.0134 C/N soil 0.1079 0.2633 0.0107

All 5 N debris 0.0044 0.1881 0.0044 N debris 0.0029 0.1992 0.0029
C/N debris 0.0757 0.2926 0.0027 NH4-N 0.0667 0.3079 0.0017

1Observations from treatments with and without cover crop (CC) included in discriminant analysis.
2See Table 1 for explanation of variable names.
3Average squared canonical correlation.
4Only cover cropped (CC) soils included.
5All soils before and after cover crop incorporation included.

correlated, however, indicating that thein vitro assay
can be used to estimate disease incidence (Grünwald
et al., 1997).

The ordinations using all soil microbial, C and N
variables distinguished well between different classes

of relative growth and disease incidence ofP. aphani-
dermatum(Figures 2 and 5). In general, the first canon-
ical variable accounted for 70–80% of the variance.
A stepwise discriminant analysis was conducted on
three classes of either relative growth or disease
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Figure 6. Relationships between disease severity and (A) N debris (P < 0.01), (B) C/N ratio (P = 0.11) of debris in low inoculum
treatment and (C) N debris (P < 0.01), (D) NH4-N (P = 0.5075) in high inoculum treatment in growth chamber assay in Experiment 1.

incidence. Sets of variables were obtained that were
significant in terms of classifying observations into
three classes of disease incidence/relative growth that
accounted for most of the variance (Tables 2 and 7).
Average squared canonical correlations were higher in
Experiment 2, presumably because this experiment was
more controlled with cover crop decomposition mea-
sured in small batches under uniform conditions. In
all cases, one to three variables selected by the step-
wise discriminant analysis gave the best relationships
(Tables 2 and 7). C and N content of debris, and NH4-N
of soil were the variables that consistently and signif-
icantly appeared in the original stepwise discriminant
analyses (Tables 2 and 7) as well as in subsequent
cross-validations (Table 6). C and N contents of debris
were negatively correlated with disease incidence or
relative growth, and thus more damping-off would be
expected at lower levels of total C or N of debris. As
presented in Gr̈unwald et al. (2000), C and N debris
are highly correlated and follow similar trends over
time being highest 20–21 days after incorporation and

dropping thereafter. The pattern over time of C and N
debris is inverse to that for relative growth (Figure 1).
These results seemingly conflict with the general ideas
that sugar-fungi likePythiumreadily colonize any fresh
plant-tissue substrates (Garrett, 1970), and would be
expected to be positively correlated with C of debris.
Our results might not follow traditional expectations,
in that debris was wet-sieved and air-dried before ana-
lyzing it for total C and N content. We effectively
only looked at the C and N content of rough debris
that floats and is larger than 250µm, thus excluding
soluble carbohydrates and finer debris. The negative
correlation might be further explained by competition
between the soil microbial community and the C and N
containing residue. Watson (1971) reported the effect
of nutrient competition as accounting for reductions
in pathogenic activities ofP. ultimum. After amend-
ment of soil with lettuce debris, he found that inocu-
lum density ofP. ultimum increased, but inoculum
potential of propagules eventually decreased with time.
Accordingly, Watson (1971) attributed the reduction
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in inoculum potentials to enhanced competition from
other soil microbes stimulated by the amendment with
lettuce. Similarly, the negative correlation between dis-
ease incidence/relative growth and C and N of debris
could reflect the enhanced competition between soil
microorganisms andP. aphanidermatumat increasing
levels of C and N content of debris.Pythiumspecies
are known to be poor saprophytes on organic matter
that has been previously colonized by other soil micro-
organisms (Barton, 1961; Hine and Trujillo, 1966).

To our surprise, few microbial variables were
selected by the stepwise discriminant analysis method.
A similar result was obtained by Mandelbaum and
Hadar (1990), who found that total microbial activity
(FDA hydrolysis) or microbial densities (bacterial and
fungal counts) alone were not reliable predictors of sup-
pression ofPythium. Ratios of available or soluble C or
N to biomass might prove to be more fruitful as indica-
tor variables. These kinds of indicator variables could
indirectly take competition for nutrients into account
by scaling the availability of substrates by the biomass
present in soil.

To the best of our knowledge this is the first time an
integrated approach has been applied to the study of
a damping-off disease, in which soil N and C cycling,
as well as soil microbial community dynamics, were
monitored and related to disease incidence or rela-
tive growth. A set of indicator variables was identi-
fied. These consist of total C and N content of debris
extracted from soil, as well as the NH4-N content of
soil. These variables show promise for assessment of
potential damping-off incidence byP. aphaniderma-
tumfor young seedlings.
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